AGL 40.21 Increased By ▲ 0.18 (0.45%)
AIRLINK 127.64 Decreased By ▼ -0.06 (-0.05%)
BOP 6.67 Increased By ▲ 0.06 (0.91%)
CNERGY 4.45 Decreased By ▼ -0.15 (-3.26%)
DCL 8.73 Decreased By ▼ -0.06 (-0.68%)
DFML 41.16 Decreased By ▼ -0.42 (-1.01%)
DGKC 86.11 Increased By ▲ 0.32 (0.37%)
FCCL 32.56 Increased By ▲ 0.07 (0.22%)
FFBL 64.38 Increased By ▲ 0.35 (0.55%)
FFL 11.61 Increased By ▲ 1.06 (10.05%)
HUBC 112.46 Increased By ▲ 1.69 (1.53%)
HUMNL 14.81 Decreased By ▼ -0.26 (-1.73%)
KEL 5.04 Increased By ▲ 0.16 (3.28%)
KOSM 7.36 Decreased By ▼ -0.09 (-1.21%)
MLCF 40.33 Decreased By ▼ -0.19 (-0.47%)
NBP 61.08 Increased By ▲ 0.03 (0.05%)
OGDC 194.18 Decreased By ▼ -0.69 (-0.35%)
PAEL 26.91 Decreased By ▼ -0.60 (-2.18%)
PIBTL 7.28 Decreased By ▼ -0.53 (-6.79%)
PPL 152.68 Increased By ▲ 0.15 (0.1%)
PRL 26.22 Decreased By ▼ -0.36 (-1.35%)
PTC 16.14 Decreased By ▼ -0.12 (-0.74%)
SEARL 85.70 Increased By ▲ 1.56 (1.85%)
TELE 7.67 Decreased By ▼ -0.29 (-3.64%)
TOMCL 36.47 Decreased By ▼ -0.13 (-0.36%)
TPLP 8.79 Increased By ▲ 0.13 (1.5%)
TREET 16.84 Decreased By ▼ -0.82 (-4.64%)
TRG 62.74 Increased By ▲ 4.12 (7.03%)
UNITY 28.20 Increased By ▲ 1.34 (4.99%)
WTL 1.34 Decreased By ▼ -0.04 (-2.9%)
BR100 10,086 Increased By 85.5 (0.85%)
BR30 31,170 Increased By 168.1 (0.54%)
KSE100 94,764 Increased By 571.8 (0.61%)
KSE30 29,410 Increased By 209 (0.72%)
Technology

Spider silk could be used as artificial muscles for robots, research finds

Researchers previously discovered that spider silk is stronger than steel and more elastic than rubber, and now a n
Published March 2, 2019

Researchers previously discovered that spider silk is stronger than steel and more elastic than rubber, and now a new research suggests that it could also be used to make artificial muscles for robotic actuators.

A team from MIT and Huazhong University of Science and Technology has showed that spider silk could contract and twist in humidity that can be used to make artificial muscle or robotic actuators. The demonstrated that slender spider fibers could suddenly shrink in response to changes in moisture, hence portraying a strong torsional force, a process known as ‘supercontraction’.

As per the study published in Science Advances, the team suspended a weight from the spider silk to make a type of pendulum. They then enclosed it in a chamber where they could control the relative humidity inside, reported Chinese news agency Xinhua.

Spider silk that is stronger than steel

“When we increased the humidity, the pendulum started to rotate. It was out of our expectation,” said the co-author Liu Dabiao.

The team identified a protein building block known as ‘proline’ in the spider’s dragline silk, which is vital to the twisting reaction and makes it happen. When water molecules interact with the proline, the proline’s hydrogen bonds are disrupted in an asymmetrical way that leads to the rotation.

The rotation goes only in one direction, taking place at a threshold of about 70% relative humidity. Researchers claimed that this property has many applications such as being explored as actuators, devices that move to perform some activity such as controlling a valve. Also, it can be used as humidity-driven soft robots, humidity sensors and smart textiles, reported Earth.com.

“This could be very interesting for the robotics community,” said researcher Markus Buehler. “It’s very precise in how you can control these motions by controlling the humidity.”

Copyright Business Recorder, 2019

Comments

Comments are closed.