AGL 40.00 No Change ▼ 0.00 (0%)
AIRLINK 129.06 Decreased By ▼ -0.47 (-0.36%)
BOP 6.75 Increased By ▲ 0.07 (1.05%)
CNERGY 4.49 Decreased By ▼ -0.14 (-3.02%)
DCL 8.55 Decreased By ▼ -0.39 (-4.36%)
DFML 40.82 Decreased By ▼ -0.87 (-2.09%)
DGKC 80.96 Decreased By ▼ -2.81 (-3.35%)
FCCL 32.77 No Change ▼ 0.00 (0%)
FFBL 74.43 Decreased By ▼ -1.04 (-1.38%)
FFL 11.74 Increased By ▲ 0.27 (2.35%)
HUBC 109.58 Decreased By ▼ -0.97 (-0.88%)
HUMNL 13.75 Decreased By ▼ -0.81 (-5.56%)
KEL 5.31 Decreased By ▼ -0.08 (-1.48%)
KOSM 7.72 Decreased By ▼ -0.68 (-8.1%)
MLCF 38.60 Decreased By ▼ -1.19 (-2.99%)
NBP 63.51 Increased By ▲ 3.22 (5.34%)
OGDC 194.69 Decreased By ▼ -4.97 (-2.49%)
PAEL 25.71 Decreased By ▼ -0.94 (-3.53%)
PIBTL 7.39 Decreased By ▼ -0.27 (-3.52%)
PPL 155.45 Decreased By ▼ -2.47 (-1.56%)
PRL 25.79 Decreased By ▼ -0.94 (-3.52%)
PTC 17.50 Decreased By ▼ -0.96 (-5.2%)
SEARL 78.65 Decreased By ▼ -3.79 (-4.6%)
TELE 7.86 Decreased By ▼ -0.45 (-5.42%)
TOMCL 33.73 Decreased By ▼ -0.78 (-2.26%)
TPLP 8.40 Decreased By ▼ -0.66 (-7.28%)
TREET 16.27 Decreased By ▼ -1.20 (-6.87%)
TRG 58.22 Decreased By ▼ -3.10 (-5.06%)
UNITY 27.49 Increased By ▲ 0.06 (0.22%)
WTL 1.39 Increased By ▲ 0.01 (0.72%)
BR100 10,445 Increased By 38.5 (0.37%)
BR30 31,189 Decreased By -523.9 (-1.65%)
KSE100 97,798 Increased By 469.8 (0.48%)
KSE30 30,481 Increased By 288.3 (0.95%)

A new research from ancient sediment cores has indicated that a warming climate could make the world's arctic tundra far more susceptible to fires than previously thought.
Carried out by Montana State University post-doctoral researcher Philip Higuera and his team, the research is important given the potential for tundra fires to release organic carbon - which could add significantly to the amount of greenhouse gases already blamed for global warming, BBC radio reported. For the research, Higuera and his co-authors examined ancient sediments from four lakes in a remote region of Alaska in and around Gates of the Arctic National Park to determine what kind of vegetation existed in the area after the last ice age, 14,000 to 9,000 years ago.
By looking at fossilized pollen grains in the sediment cores, Higuera and his co-authors determined that after the last ice age, the arctic tundra was very different from what it is now. Instead of being covered with grasses, herbs, and short shrubs, it was covered with vast expanses of tall birch shrubs. Charcoal preserved in the sediment cores also showed evidence that those shrub expanses burned frequently.
This was a surprise," said Higuera. "Modern tundra burns so infrequently that we don't really have a good idea of how often tundra can burn. Best estimates for the most flammable tundra regions are that it burns once every 250-plus years," he added.
The ancient sediment cores showed the shrub tundra burned as frequently as modern boreal forests in Alaska - every 140 years on average, but with some fires spaced only 30 years apart. Higuera's research is important because other evidence indicates that as the climate has warmed in the past 50 to 100 years, shrubs have expanded across the world's tundra regions.
There is evidence of increasing shrub biomass in modern tundra ecosystems, and we expect temperatures to continue to increase and overall moisture levels to decrease. Combine these two factors and it suggests a greater potential for fires," Higuera said. "The sediment cores indicate that it's happened before." The world's high latitude tundra and boreal forest ecosystems contain roughly 30 percent of the planet's total soil carbon.
Currently, much of the carbon is locked in permafrost. But a warming climate could cause the permafrost to melt and release its carbon stores into the atmosphere where it would contribute to the greenhouse effect. Vegetation change through an increase in shrub biomass and more frequent burning will change a great deal of the carbon cycle in these high latitudes," said Higuera.

Copyright Associated Press of Pakistan, 2008

Comments

Comments are closed.