AGL 38.20 Increased By ▲ 0.21 (0.55%)
AIRLINK 211.50 Decreased By ▼ -4.03 (-1.87%)
BOP 9.48 Decreased By ▼ -0.32 (-3.27%)
CNERGY 6.52 Decreased By ▼ -0.27 (-3.98%)
DCL 9.00 Decreased By ▼ -0.17 (-1.85%)
DFML 38.23 Decreased By ▼ -0.73 (-1.87%)
DGKC 96.86 Decreased By ▼ -3.39 (-3.38%)
FCCL 36.55 Decreased By ▼ -0.15 (-0.41%)
FFBL 88.94 No Change ▼ 0.00 (0%)
FFL 14.98 Increased By ▲ 0.49 (3.38%)
HUBC 131.00 Decreased By ▼ -3.13 (-2.33%)
HUMNL 13.44 Decreased By ▼ -0.19 (-1.39%)
KEL 5.51 Decreased By ▼ -0.18 (-3.16%)
KOSM 6.87 Decreased By ▼ -0.45 (-6.15%)
MLCF 44.90 Decreased By ▼ -0.97 (-2.11%)
NBP 59.34 Decreased By ▼ -1.94 (-3.17%)
OGDC 230.00 Decreased By ▼ -2.59 (-1.11%)
PAEL 39.20 Decreased By ▼ -1.53 (-3.76%)
PIBTL 8.38 Decreased By ▼ -0.20 (-2.33%)
PPL 200.00 Decreased By ▼ -3.34 (-1.64%)
PRL 39.10 Decreased By ▼ -1.71 (-4.19%)
PTC 27.00 Decreased By ▼ -1.31 (-4.63%)
SEARL 103.32 Decreased By ▼ -5.19 (-4.78%)
TELE 8.40 Decreased By ▼ -0.34 (-3.89%)
TOMCL 35.35 Decreased By ▼ -0.48 (-1.34%)
TPLP 13.46 Decreased By ▼ -0.38 (-2.75%)
TREET 25.30 Increased By ▲ 0.92 (3.77%)
TRG 64.50 Increased By ▲ 3.35 (5.48%)
UNITY 34.90 Increased By ▲ 0.06 (0.17%)
WTL 1.77 Increased By ▲ 0.05 (2.91%)
BR100 12,110 Decreased By -137 (-1.12%)
BR30 37,723 Decreased By -662.1 (-1.72%)
KSE100 112,415 Decreased By -1509.6 (-1.33%)
KSE30 35,508 Decreased By -535.7 (-1.49%)
World

Ultrasound has potential to damage coronaviruses, reveals MIT study

  • Scientists found that vibrations between 25 and 100 megahertz triggered the virus’ shell and spikes to collapse and start to rupture within a fraction of a millisecond
  • The effect has ben seen in simulations of the virus in air and in water
Published March 21, 2021

(Karachi) Coronaviruses, including SARS-CoV-2, may be vulnerable to ultrasound vibrations within the frequencies used in medical diagnostic imaging, a new study carried out by researchers from Massachusetts Institute of Technology (MIT), United States claimed.

As per details, the researchers monitored the mechanical response to vibrations across ultrasound frequencies with the help of computer simulations. During the study, the scientists found that vibrations between 25 and 100 megahertz triggered the virus’ shell and spikes to collapse and start to rupture within a fraction of a millisecond. This effect has been seen in simulations of the virus in air and in water.

However, they said that the results obtained are preliminary and based on limited data.

Professor of Applied Mechanics at MIT Tomasz Wierzbicki said, “We’ve proven that under ultrasound excitation the coronavirus shell and spikes will vibrate, and the amplitude of that vibration will be very large, producing strains that could break certain parts of the virus, doing visible damage to the outer shell and possibly invisible damage to the RNA inside.”

He added, “The hope is that our paper will initiate a discussion across various disciplines.”

The team’s results appear online in the Journal of the Mechanics and Physics of Solids.

Comments

Comments are closed.