AGL 40.00 No Change ▼ 0.00 (0%)
AIRLINK 129.00 Decreased By ▼ -0.53 (-0.41%)
BOP 6.76 Increased By ▲ 0.08 (1.2%)
CNERGY 4.50 Decreased By ▼ -0.13 (-2.81%)
DCL 8.70 Decreased By ▼ -0.24 (-2.68%)
DFML 41.00 Decreased By ▼ -0.69 (-1.66%)
DGKC 81.30 Decreased By ▼ -2.47 (-2.95%)
FCCL 32.68 Decreased By ▼ -0.09 (-0.27%)
FFBL 74.25 Decreased By ▼ -1.22 (-1.62%)
FFL 11.75 Increased By ▲ 0.28 (2.44%)
HUBC 110.03 Decreased By ▼ -0.52 (-0.47%)
HUMNL 13.80 Decreased By ▼ -0.76 (-5.22%)
KEL 5.29 Decreased By ▼ -0.10 (-1.86%)
KOSM 7.63 Decreased By ▼ -0.77 (-9.17%)
MLCF 38.35 Decreased By ▼ -1.44 (-3.62%)
NBP 63.70 Increased By ▲ 3.41 (5.66%)
OGDC 194.88 Decreased By ▼ -4.78 (-2.39%)
PAEL 25.75 Decreased By ▼ -0.90 (-3.38%)
PIBTL 7.37 Decreased By ▼ -0.29 (-3.79%)
PPL 155.74 Decreased By ▼ -2.18 (-1.38%)
PRL 25.70 Decreased By ▼ -1.03 (-3.85%)
PTC 17.56 Decreased By ▼ -0.90 (-4.88%)
SEARL 78.71 Decreased By ▼ -3.73 (-4.52%)
TELE 7.88 Decreased By ▼ -0.43 (-5.17%)
TOMCL 33.61 Decreased By ▼ -0.90 (-2.61%)
TPLP 8.41 Decreased By ▼ -0.65 (-7.17%)
TREET 16.26 Decreased By ▼ -1.21 (-6.93%)
TRG 58.60 Decreased By ▼ -2.72 (-4.44%)
UNITY 27.51 Increased By ▲ 0.08 (0.29%)
WTL 1.41 Increased By ▲ 0.03 (2.17%)
BR100 10,450 Increased By 43.4 (0.42%)
BR30 31,209 Decreased By -504.2 (-1.59%)
KSE100 97,798 Increased By 469.8 (0.48%)
KSE30 30,481 Increased By 288.3 (0.95%)
Technology

NASA, MIT create new shape-shifting airplane wing for more efficient air travel

Researchers from NASA and MIT have successfully built a new kind of airplane wing that could automatically change s
Published April 2, 2019 Updated April 4, 2019

Researchers from NASA and MIT have successfully built a new kind of airplane wing that could automatically change shape and make air travel way more efficient.

The new structure is a lightweight lattice framework which is made up of thousands of repeating, tiny triangles of matchstick-like struts that are covered in a thin polymer layer, detailed Engadget. Since this material mainly consists of empty space, it is incredibly lightweight, less than one-thousandth the density of rubber.

Moreover, the struts enable the wing to change its shape automatically in response to changes in the aerodynamic loading conditions. The wing automatically adjusts itself to whatever configuration is most favorable for the current phase of flight. Both the factors combined could pave way to make aircraft more energy efficient.

MIT researchers fly first-ever aircraft with no moving parts

Researchers explained that for each of the phases of flight, such as takeoff and landing, cruising, maneuvering and such, they all have their own various set of optimal wing parameters, hence providing a much better approximation of the best configuration for each stage, as per MIT News.

“We’re able to gain efficiency by matching the shape to the loads at different angles of attack,” said lead author Nicholas Cramer. “We’re able to produce the exact same behavior you would do actively, but we did it passively.”

“The research shows promise for reducing cost and increasing the performance for large, light weight, stiff structures,” researcher Daniel Campbell, who wasn’t involved in the research, told MIT News. “Most promising near-term applications are structural applications for airships and space-based structures, such as antennas.”

Copyright Business Recorder, 2019

Comments

Comments are closed.