AGL 38.02 Increased By ▲ 0.08 (0.21%)
AIRLINK 197.36 Increased By ▲ 3.45 (1.78%)
BOP 9.54 Increased By ▲ 0.22 (2.36%)
CNERGY 5.91 Increased By ▲ 0.07 (1.2%)
DCL 8.82 Increased By ▲ 0.14 (1.61%)
DFML 35.74 Decreased By ▼ -0.72 (-1.97%)
DGKC 96.86 Increased By ▲ 4.32 (4.67%)
FCCL 35.25 Increased By ▲ 1.28 (3.77%)
FFBL 88.94 Increased By ▲ 6.64 (8.07%)
FFL 13.17 Increased By ▲ 0.42 (3.29%)
HUBC 127.55 Increased By ▲ 6.94 (5.75%)
HUMNL 13.50 Decreased By ▼ -0.10 (-0.74%)
KEL 5.32 Increased By ▲ 0.10 (1.92%)
KOSM 7.00 Increased By ▲ 0.48 (7.36%)
MLCF 44.70 Increased By ▲ 2.59 (6.15%)
NBP 61.42 Increased By ▲ 1.61 (2.69%)
OGDC 214.67 Increased By ▲ 3.50 (1.66%)
PAEL 38.79 Increased By ▲ 1.21 (3.22%)
PIBTL 8.25 Increased By ▲ 0.18 (2.23%)
PPL 193.08 Increased By ▲ 2.76 (1.45%)
PRL 38.66 Increased By ▲ 0.49 (1.28%)
PTC 25.80 Increased By ▲ 2.35 (10.02%)
SEARL 103.60 Increased By ▲ 5.66 (5.78%)
TELE 8.30 Increased By ▲ 0.08 (0.97%)
TOMCL 35.00 Decreased By ▼ -0.03 (-0.09%)
TPLP 13.30 Decreased By ▼ -0.25 (-1.85%)
TREET 22.16 Decreased By ▼ -0.57 (-2.51%)
TRG 55.59 Increased By ▲ 2.72 (5.14%)
UNITY 32.97 Increased By ▲ 0.01 (0.03%)
WTL 1.60 Increased By ▲ 0.08 (5.26%)
BR100 11,727 Increased By 342.7 (3.01%)
BR30 36,377 Increased By 1165.1 (3.31%)
KSE100 109,513 Increased By 3238.2 (3.05%)
KSE30 34,513 Increased By 1160.1 (3.48%)

Many people worry about inheriting health problems from their parents, but a new approach to analyzing genetic contributions to disease risk suggests that for most diseases, commercial DNA tests are not the best way to assess the odds. For the study, researchers analyzed data from almost 600 earlier studies that found associations between common variations in the DNA sequence, known as single-nucleotide polymorphisms (SNPs), and more than 200 medical conditions. Usually, genetics explained no more than 5%-10% of the risk for several common ailments including certain cancers, diabetes and Alzheimer's. "Most common, chronic diseases have little to do with genetics or to do with your parents or the genes you inherited from them," said senior study author David Wishart, a researcher at the University of Alberta in Canada. "If you are worried about developing a disease, genetic testing won't tell you much - unless you have a strong family history of a certain disease (multiple parents, siblings, aunts and uncles are afflicted)," Wishart said in an email. The study found some exceptions, where genetics clearly do play a more powerful role, accounting for up to about half of the risk for diseases like Crohn's, celiac and macular degeneration, Wishart noted. "Despite these rare exceptions, it is becoming increasingly clear that the risks for getting most diseases arise from your metabolism, your environment, your lifestyle, or your exposure to various kinds of nutrients, chemicals, bacteria, or viruses," Wishart said. For decades, scientists have studied how genes might help predict disease risk, Wishart's team notes in PLoS ONE. Many of these older studies focused on how diseases developed in identical and non-identical twins, and estimated that genetics might explain up to 80%-90% of the risk for many common conditions. More recently, however, scientists started looking at this question differently, scanning the entire genomes of thousands or millions of people. Many such studies identify SNPs that appear to be associated with a small amount of increased risk for a particular illness. But they don't determine whether or how that variant directly influences the disease, and often the effect of any one marker is very small. For the current study, the researchers developed a computer program to measure the performance of SNPs or combinations of SNPs in predicting risk for diseases. Then they ran the program using data from previous whole-genome studies. "What we found was quite shocking," Wishart said. "Based on our results, more than 95% of diseases or disease risks (including Alzheimer's disease, autism, asthma, juvenile diabetes, psoriasis, etc.) could NOT be predicted accurately from SNPs." When they used the SNP data to calculate the risk of developing certain conditions that a parent had, the "heritable" risk was again very small. "The heritability of most diseases derived from SNPs was typically less than 5% (not 80%-90%)," Wishart said. In most cases, other kinds of tests - such as blood tests for proteins or other molecules involved in metabolism or in specific diseases - offer a much more reliable picture of disease processes and risk than pricey consumer DNA tests do, the study team concludes. One important caveat and open question is the role of environmental and lifestyle factors in magnifying genetic risk, Wishart noted. Even when people have a very small genetic risk for a disease, certain lifestyle habits like smoking or inactivity or environmental factors like pollution exposure can exacerbate the risk.

Copyright Reuters, 2020

Comments

Comments are closed.