AGL 38.02 Increased By ▲ 0.08 (0.21%)
AIRLINK 197.36 Increased By ▲ 3.45 (1.78%)
BOP 9.54 Increased By ▲ 0.22 (2.36%)
CNERGY 5.91 Increased By ▲ 0.07 (1.2%)
DCL 8.82 Increased By ▲ 0.14 (1.61%)
DFML 35.74 Decreased By ▼ -0.72 (-1.97%)
DGKC 96.86 Increased By ▲ 4.32 (4.67%)
FCCL 35.25 Increased By ▲ 1.28 (3.77%)
FFBL 88.94 Increased By ▲ 6.64 (8.07%)
FFL 13.17 Increased By ▲ 0.42 (3.29%)
HUBC 127.55 Increased By ▲ 6.94 (5.75%)
HUMNL 13.50 Decreased By ▼ -0.10 (-0.74%)
KEL 5.32 Increased By ▲ 0.10 (1.92%)
KOSM 7.00 Increased By ▲ 0.48 (7.36%)
MLCF 44.70 Increased By ▲ 2.59 (6.15%)
NBP 61.42 Increased By ▲ 1.61 (2.69%)
OGDC 214.67 Increased By ▲ 3.50 (1.66%)
PAEL 38.79 Increased By ▲ 1.21 (3.22%)
PIBTL 8.25 Increased By ▲ 0.18 (2.23%)
PPL 193.08 Increased By ▲ 2.76 (1.45%)
PRL 38.66 Increased By ▲ 0.49 (1.28%)
PTC 25.80 Increased By ▲ 2.35 (10.02%)
SEARL 103.60 Increased By ▲ 5.66 (5.78%)
TELE 8.30 Increased By ▲ 0.08 (0.97%)
TOMCL 35.00 Decreased By ▼ -0.03 (-0.09%)
TPLP 13.30 Decreased By ▼ -0.25 (-1.85%)
TREET 22.16 Decreased By ▼ -0.57 (-2.51%)
TRG 55.59 Increased By ▲ 2.72 (5.14%)
UNITY 32.97 Increased By ▲ 0.01 (0.03%)
WTL 1.60 Increased By ▲ 0.08 (5.26%)
BR100 11,727 Increased By 342.7 (3.01%)
BR30 36,377 Increased By 1165.1 (3.31%)
KSE100 109,513 Increased By 3238.2 (3.05%)
KSE30 34,513 Increased By 1160.1 (3.48%)

image

Just in, scientists have developed now what could be called a fourth state of matter dubbed time crystals, although the name sounds like something out of a sci-fi flick, they are very real and may not have to do much with time travel.

The difference between a regular crystal and time crystal is plain enough as the former has a structure that repeats itself in space, though the lateral have structures that repeat in time.

According to a paper published in Physical Review Letter, a team of American researchers led by Norman Yao over from UC Berkeley, discussed in length the process of making time crystals and observing their properties.

Time crystals were first acquired a couple of months ago, when researchers from the University of Maryland created a chain of 10 ytterbium atoms and hit them with two lasers multiple times to keep them out of a stationery state thus equilibrium.

However, they discovered that the chain would settle down into a stable but repetitive patter every time, but the matter itself stayed out of equilibrium.

This marked the first instance of a study of a new kind of matter that could not stay put in motionless equilibrium like diamonds.

"Wouldn't it be super weird if you jiggled Jell-O and found that somehow it responded at a different period? But that is the essence of the time crystal. You have some periodic driver that has a period 'T', but the system somehow synchronizes so that you observe the system oscillating with a period that is larger than 'T'," said Yao, while giving a statement.

This experiment is not just an isolated incident, a different set up was held out at Harvard while being under the supervision Yao himself; [owing to good fortunes] the results were found to be consistent and submitted for publication looking for the first time into a new construct of matter.

"This is a new phase of matter, period, but it is also really cool because it is one of the first examples of non-equilibrium matter. For the last half-century, we have been exploring equilibrium matter, like metals and insulators. We are just now starting to explore a whole new landscape of non-equilibrium matter," Yao further added.

Time crystals were first proposed in 2012 by Nobel Laureate Frank Wilczek, and while scientists do not have a use for them yet, they might have the right properties to be useful in the time to come.

Copyright Business Recorder, 2017

Comments

Comments are closed.