AGL 40.00 No Change ▼ 0.00 (0%)
AIRLINK 129.06 Decreased By ▼ -0.47 (-0.36%)
BOP 6.75 Increased By ▲ 0.07 (1.05%)
CNERGY 4.49 Decreased By ▼ -0.14 (-3.02%)
DCL 8.55 Decreased By ▼ -0.39 (-4.36%)
DFML 40.82 Decreased By ▼ -0.87 (-2.09%)
DGKC 80.96 Decreased By ▼ -2.81 (-3.35%)
FCCL 32.77 No Change ▼ 0.00 (0%)
FFBL 74.43 Decreased By ▼ -1.04 (-1.38%)
FFL 11.74 Increased By ▲ 0.27 (2.35%)
HUBC 109.58 Decreased By ▼ -0.97 (-0.88%)
HUMNL 13.75 Decreased By ▼ -0.81 (-5.56%)
KEL 5.31 Decreased By ▼ -0.08 (-1.48%)
KOSM 7.72 Decreased By ▼ -0.68 (-8.1%)
MLCF 38.60 Decreased By ▼ -1.19 (-2.99%)
NBP 63.51 Increased By ▲ 3.22 (5.34%)
OGDC 194.69 Decreased By ▼ -4.97 (-2.49%)
PAEL 25.71 Decreased By ▼ -0.94 (-3.53%)
PIBTL 7.39 Decreased By ▼ -0.27 (-3.52%)
PPL 155.45 Decreased By ▼ -2.47 (-1.56%)
PRL 25.79 Decreased By ▼ -0.94 (-3.52%)
PTC 17.50 Decreased By ▼ -0.96 (-5.2%)
SEARL 78.65 Decreased By ▼ -3.79 (-4.6%)
TELE 7.86 Decreased By ▼ -0.45 (-5.42%)
TOMCL 33.73 Decreased By ▼ -0.78 (-2.26%)
TPLP 8.40 Decreased By ▼ -0.66 (-7.28%)
TREET 16.27 Decreased By ▼ -1.20 (-6.87%)
TRG 58.22 Decreased By ▼ -3.10 (-5.06%)
UNITY 27.49 Increased By ▲ 0.06 (0.22%)
WTL 1.39 Increased By ▲ 0.01 (0.72%)
BR100 10,445 Increased By 38.5 (0.37%)
BR30 31,189 Decreased By -523.9 (-1.65%)
KSE100 97,798 Increased By 469.8 (0.48%)
KSE30 30,481 Increased By 288.3 (0.95%)
Technology

End of fragile smartphones as scientists develop flexible screens

Scientists have finally found a reliable solution to our easily breakable smartphone screens by creating flexible a
Published October 26, 2017

Scientists have finally found a reliable solution to our easily breakable smartphone screens by creating flexible and eco-friendly screens for our smartphones.

Professor Alan Dalton and his team from University of Sussex have created a way to make a kind of smartphone screens that are less fragile, cheaper and also environmentally friendly. Also, they use less energy, are more responsive and do not dull out when outside.

The current element indium tin oxide that is used for the screens is expensive and brittle. Indium itself is a rare metal and ecologically damaging to extract. What the scientists did was combining silver nanowires with graphene, a carbon material. The combination exactly matched the functioning of existing technology but with much lesser cost, reported Science Daily.

New smartphone with ‘holographic display’

According to the lead researcher Dr Matthew Large, unlike indium, graphene exists in large quantities which automatically lessen the cost for making a touch sensor. Graphene also protects tarnishing of screen in air by blocking air impurities to attack the silver. Even when the screen is bent, the electrical traits did not change which is not seen in the normal screens.

Professor Dalton further explained, “While silver nanowires have been used in touch screens before, no one has tried to combine them with graphene. What's exciting about what we're doing is the way we put the graphene layer down. We float the graphene particles on the surface of water, then pick them up with a rubber stamp, a bit like a potato stamp, and lay it on top of the silver nanowire film in whatever pattern we like.”

Moreover, according to Phys, the new technology can be used on large scale too through spraying machines and patterned rollers. “The addition of graphene to the silver nanowire network also increases its ability to conduct electricity by around a factor of ten thousand. This means we can use a fraction of the amount of silver to get the same, or better, performance. As a result screens will be more responsive and use less power,” Dalton added.

Copyright Business Recorder, 2017

Comments

Comments are closed.