AGL 37.89 Decreased By ▼ -0.26 (-0.68%)
AIRLINK 124.10 Increased By ▲ 2.59 (2.13%)
BOP 5.67 Decreased By ▼ -0.18 (-3.08%)
CNERGY 3.75 No Change ▼ 0.00 (0%)
DCL 8.55 Increased By ▲ 0.15 (1.79%)
DFML 40.48 Decreased By ▼ -0.41 (-1%)
DGKC 87.10 Increased By ▲ 2.50 (2.96%)
FCCL 33.98 Increased By ▲ 1.28 (3.91%)
FFBL 66.01 Increased By ▲ 0.51 (0.78%)
FFL 10.20 Increased By ▲ 0.15 (1.49%)
HUBC 104.45 Increased By ▲ 0.65 (0.63%)
HUMNL 13.45 Increased By ▲ 0.20 (1.51%)
KEL 4.78 Increased By ▲ 0.35 (7.9%)
KOSM 6.84 Decreased By ▼ -0.25 (-3.53%)
MLCF 38.84 Increased By ▲ 1.34 (3.57%)
NBP 60.35 Increased By ▲ 0.10 (0.17%)
OGDC 179.65 Increased By ▲ 7.40 (4.3%)
PAEL 24.97 Increased By ▲ 0.17 (0.69%)
PIBTL 5.71 Increased By ▲ 0.01 (0.18%)
PPL 153.00 Increased By ▲ 11.31 (7.98%)
PRL 22.79 Increased By ▲ 0.07 (0.31%)
PTC 14.91 Increased By ▲ 0.17 (1.15%)
SEARL 66.85 Increased By ▲ 2.29 (3.55%)
TELE 7.01 Decreased By ▼ -0.13 (-1.82%)
TOMCL 35.70 Increased By ▲ 0.20 (0.56%)
TPLP 7.32 Increased By ▲ 0.03 (0.41%)
TREET 13.99 Decreased By ▼ -0.21 (-1.48%)
TRG 50.95 Decreased By ▼ -0.80 (-1.55%)
UNITY 26.40 Decreased By ▼ -0.20 (-0.75%)
WTL 1.23 Increased By ▲ 0.01 (0.82%)
BR100 9,717 Increased By 233.5 (2.46%)
BR30 29,237 Increased By 866.2 (3.05%)
KSE100 90,860 Increased By 1893.1 (2.13%)
KSE30 28,458 Increased By 630.4 (2.27%)

European scientists said on April 25 that a new laboratory experiment shows the Earth's core is likely much hotter than last reported 20 years ago. It's not that the iron core of our planet has warmed, but rather that the technique used to estimate its heat previously was flawed, researchers said in the journal Science.
Newer techniques have allowed experts at the European Synchrotron Radiation Facility to determine the temperature near Earth's centre to be 6,000 degrees Celsius (10,832 degrees Fahrenheit). That is about 1,000 degrees C hotter than an experiment conducted by German researchers in 1993.
Researchers are analysing the solid iron core of the Earth, where extreme temperatures and pressure result in a hard center, while the surrounding iron at lower temperatures of about 4,000 degrees Celsius remains liquid. "We have developed a new technique where an intense beam of X-rays from the synchrotron can probe a sample and deduce whether it is solid, liquid or partially molten within as little as a second, using a process known diffraction," said Mohamed Mezouar from the ESRF.

Copyright Agence France-Presse, 2013

Comments

Comments are closed.