AGL 40.00 No Change ▼ 0.00 (0%)
AIRLINK 129.00 Decreased By ▼ -0.53 (-0.41%)
BOP 6.76 Increased By ▲ 0.08 (1.2%)
CNERGY 4.50 Decreased By ▼ -0.13 (-2.81%)
DCL 8.70 Decreased By ▼ -0.24 (-2.68%)
DFML 41.00 Decreased By ▼ -0.69 (-1.66%)
DGKC 81.30 Decreased By ▼ -2.47 (-2.95%)
FCCL 32.68 Decreased By ▼ -0.09 (-0.27%)
FFBL 74.25 Decreased By ▼ -1.22 (-1.62%)
FFL 11.75 Increased By ▲ 0.28 (2.44%)
HUBC 110.03 Decreased By ▼ -0.52 (-0.47%)
HUMNL 13.80 Decreased By ▼ -0.76 (-5.22%)
KEL 5.29 Decreased By ▼ -0.10 (-1.86%)
KOSM 7.63 Decreased By ▼ -0.77 (-9.17%)
MLCF 38.35 Decreased By ▼ -1.44 (-3.62%)
NBP 63.70 Increased By ▲ 3.41 (5.66%)
OGDC 194.88 Decreased By ▼ -4.78 (-2.39%)
PAEL 25.75 Decreased By ▼ -0.90 (-3.38%)
PIBTL 7.37 Decreased By ▼ -0.29 (-3.79%)
PPL 155.74 Decreased By ▼ -2.18 (-1.38%)
PRL 25.70 Decreased By ▼ -1.03 (-3.85%)
PTC 17.56 Decreased By ▼ -0.90 (-4.88%)
SEARL 78.71 Decreased By ▼ -3.73 (-4.52%)
TELE 7.88 Decreased By ▼ -0.43 (-5.17%)
TOMCL 33.61 Decreased By ▼ -0.90 (-2.61%)
TPLP 8.41 Decreased By ▼ -0.65 (-7.17%)
TREET 16.26 Decreased By ▼ -1.21 (-6.93%)
TRG 58.60 Decreased By ▼ -2.72 (-4.44%)
UNITY 27.51 Increased By ▲ 0.08 (0.29%)
WTL 1.41 Increased By ▲ 0.03 (2.17%)
BR100 10,450 Increased By 43.4 (0.42%)
BR30 31,209 Decreased By -504.2 (-1.59%)
KSE100 97,798 Increased By 469.8 (0.48%)
KSE30 30,481 Increased By 288.3 (0.95%)

By mid-century, higher levels of carbon dioxide (CO2) in ocean water could leave fish "intoxicated", becoming lost at sea, a study said January 20. The oceans absorb about a third of the CO2 released by mankind's burning of coal, oil and gas their chemical composition changing over time to become more acidic.
Scientists from the University of New South Wales in Australia have now calculated that rising CO2 concentrations could cause a phenomenon known as hypercapnia in fish already by 2050 much earlier than once thought possible.
"Essentially, the fish become lost at sea," lead author Ben McNeil said in a statement of the condition.
"The carbon dioxide affects their brains and they lose their sense of direction and ability to find their way home. They don't even know where their predators are."
McNeil and colleague Tristan Sasse based their projections on worst-case-scenario carbon dioxide trajectories, implying that humans do nothing to curb their emissions.
"We've shown that if atmospheric carbon dioxide pollution continues to rise, fish and other marine creatures in CO2 hotspots in the Southern, Pacific and North Atlantic oceans will experience episodes of hypercapnia by the middle of this century much sooner than had been predicted, and with more damaging effects than thought," said McNeil.

Copyright Agence France-Presse, 2016

Comments

Comments are closed.