AGL 40.00 No Change ▼ 0.00 (0%)
AIRLINK 129.06 Decreased By ▼ -0.47 (-0.36%)
BOP 6.75 Increased By ▲ 0.07 (1.05%)
CNERGY 4.49 Decreased By ▼ -0.14 (-3.02%)
DCL 8.55 Decreased By ▼ -0.39 (-4.36%)
DFML 40.82 Decreased By ▼ -0.87 (-2.09%)
DGKC 80.96 Decreased By ▼ -2.81 (-3.35%)
FCCL 32.77 No Change ▼ 0.00 (0%)
FFBL 74.43 Decreased By ▼ -1.04 (-1.38%)
FFL 11.74 Increased By ▲ 0.27 (2.35%)
HUBC 109.58 Decreased By ▼ -0.97 (-0.88%)
HUMNL 13.75 Decreased By ▼ -0.81 (-5.56%)
KEL 5.31 Decreased By ▼ -0.08 (-1.48%)
KOSM 7.72 Decreased By ▼ -0.68 (-8.1%)
MLCF 38.60 Decreased By ▼ -1.19 (-2.99%)
NBP 63.51 Increased By ▲ 3.22 (5.34%)
OGDC 194.69 Decreased By ▼ -4.97 (-2.49%)
PAEL 25.71 Decreased By ▼ -0.94 (-3.53%)
PIBTL 7.39 Decreased By ▼ -0.27 (-3.52%)
PPL 155.45 Decreased By ▼ -2.47 (-1.56%)
PRL 25.79 Decreased By ▼ -0.94 (-3.52%)
PTC 17.50 Decreased By ▼ -0.96 (-5.2%)
SEARL 78.65 Decreased By ▼ -3.79 (-4.6%)
TELE 7.86 Decreased By ▼ -0.45 (-5.42%)
TOMCL 33.73 Decreased By ▼ -0.78 (-2.26%)
TPLP 8.40 Decreased By ▼ -0.66 (-7.28%)
TREET 16.27 Decreased By ▼ -1.20 (-6.87%)
TRG 58.22 Decreased By ▼ -3.10 (-5.06%)
UNITY 27.49 Increased By ▲ 0.06 (0.22%)
WTL 1.39 Increased By ▲ 0.01 (0.72%)
BR100 10,445 Increased By 38.5 (0.37%)
BR30 31,189 Decreased By -523.9 (-1.65%)
KSE100 97,798 Increased By 469.8 (0.48%)
KSE30 30,481 Increased By 288.3 (0.95%)

European scientists said Thursday they have discovered a new subatomic particle containing a never-before-seen combination of quarks - the most basic building blocks of matter. The particle, a baryon dubbed Xicc++, contains two heavy "charm" quarks and one "up" quark, and has about four times the mass of a more familiar baryon - the proton. The particle is predicted in the Standard Model of particle physics, and its discovery was "not a shock," said Matthew Charles of the LPNHE physics lab in Paris.
He is one of about 800 scientists to attach their names to the discovery by the Large Hadron Collider (LHC) of the European Organisation for Nuclear Research (CERN). The collider is most famous for discovering the Higgs boson, which confers mass on matter. The new particle is the first seen with two such heavy quarks, said the team. There are six types of quark, with exotic names such as "charm", "strange" and "beauty". The "charm", "top" and "bottom" quarks are the heaviest types.
Quarks make up baryons such as protons and neutrons that comprise most of the mass in the known Universe. Baryons gather together in atoms, which form the molecules that constitute matter. "This type of particle, these doubly-charmed baryons... they've been quite elusive," Charles told AFP. From their short-lived existence in the early Universe, none are left today. And to produce them in the lab requires an extreme concentration of energy, such as can be generated by the new, upgraded LHC.
The Xicc++ is an unstable baryon, said Charles. It lives for "a very small fraction of a second" before decaying into other, lighter particles. Its discovery will allow scientists to continue testing the Standard Model of physics - the mainstream theory of the fundamental particles that make up matter, and the forces that govern them. It does not, however, explain dark matter, or why there is more matter than anti-matter in the Universe.

Copyright Agence France-Presse, 2017

Comments

Comments are closed.