AIRLINK 212.82 Increased By ▲ 3.27 (1.56%)
BOP 10.25 Decreased By ▼ -0.21 (-2.01%)
CNERGY 7.00 Decreased By ▼ -0.35 (-4.76%)
FCCL 33.47 Decreased By ▼ -0.92 (-2.68%)
FFL 17.64 Decreased By ▼ -0.41 (-2.27%)
FLYNG 21.82 Decreased By ▼ -1.10 (-4.8%)
HUBC 129.11 Decreased By ▼ -3.38 (-2.55%)
HUMNL 13.86 Decreased By ▼ -0.28 (-1.98%)
KEL 4.86 Decreased By ▼ -0.17 (-3.38%)
KOSM 6.93 Decreased By ▼ -0.14 (-1.98%)
MLCF 43.63 Decreased By ▼ -1.57 (-3.47%)
OGDC 212.95 Decreased By ▼ -5.43 (-2.49%)
PACE 7.22 Decreased By ▼ -0.36 (-4.75%)
PAEL 41.17 Decreased By ▼ -0.53 (-1.27%)
PIAHCLA 16.83 Decreased By ▼ -0.47 (-2.72%)
PIBTL 8.63 Increased By ▲ 0.08 (0.94%)
POWERPS 12.50 No Change ▼ 0.00 (0%)
PPL 183.03 Decreased By ▼ -6.00 (-3.17%)
PRL 39.63 Decreased By ▼ -2.70 (-6.38%)
PTC 24.73 Decreased By ▼ -0.44 (-1.75%)
SEARL 98.01 Decreased By ▼ -5.95 (-5.72%)
SILK 1.01 Decreased By ▼ -0.02 (-1.94%)
SSGC 41.73 Increased By ▲ 2.49 (6.35%)
SYM 18.86 Decreased By ▼ -0.30 (-1.57%)
TELE 9.00 Decreased By ▼ -0.24 (-2.6%)
TPLP 12.40 Decreased By ▼ -0.70 (-5.34%)
TRG 65.68 Decreased By ▼ -3.50 (-5.06%)
WAVESAPP 10.98 Increased By ▲ 0.26 (2.43%)
WTL 1.79 Increased By ▲ 0.08 (4.68%)
YOUW 4.03 Decreased By ▼ -0.11 (-2.66%)
BR100 11,866 Decreased By -213.1 (-1.76%)
BR30 35,697 Decreased By -905.3 (-2.47%)
KSE100 114,148 Decreased By -1904.2 (-1.64%)
KSE30 35,952 Decreased By -625.5 (-1.71%)

Brain cells - neurons - develop gene mutations over the course of a lifetime, contributing to normal aging and potentially presenting a target for treatments that stave off dementia and other types of cognittive decline, researchers say The team developed a way to sequence the genomes of individual neurons, which allowed them to see what changes are normal and also what happens in specific brain diseases.
"The work is at a very early stage," senior study author Dr Christopher A. Walsh from Harvard Medical School in Boston told Reuters Health by email. "We have only just developed a method that we hope will give us new insight into how neurons age, and we hope to use it to understand more about common forms of dementia and degeneration."
Scientists have long thought that aging and degenerative brain diseases are associated with genetic changes in brain cells, but until now, they haven't had the technology to test this theory. Dr Walsh's team found a way to look at all the genes within a single neuron and then analyzed neurons from the cadavers of 15 neurologically normal individuals aged 4 months to 82 years. The also looked at nine people diagnosed with Cockayne syndrome (CS) or Xeroderma pigmentosum (XP), conditions caused by defects in DNA damage repair that are associated with brain degeneration and premature aging.
Just like cells throughout the rest of the body, the researchers found that genetic mutations increased in number with increasing age in normal neurons. But, they noted, brain regions associated with age-related degenerative conditions like Alzheimer's disease and age-related cognitive decline were especially affected, according to the report in the journal Science.
Autopsy specimens from brains of patients with CS and XP also showed increased numbers of mutations, which were more than twice as common as those seen in brain cells from individuals of the same age without those diseases. The researchers found that mutations start occurring even as the brain is still developing in an infant, and they estimate that by the age of 1 year, normal brain cells have 600 to 900 single-letter changes in their genes. By the time someone is in their 80s, there are an estimated 2,400 changes.
The study team also identified three patterns of mutations in brain cells across a lifetime. In one, which they called Signature A, mutations increased with age regardless of brain region. In another, which they called Signature B, mutations were increased in brain regions associated with Alzheimer's disease but not in areas associated with age-related cognitive decline.

Comments

Comments are closed.