AIRLINK 200.02 Increased By ▲ 6.46 (3.34%)
BOP 10.23 Increased By ▲ 0.28 (2.81%)
CNERGY 7.83 Decreased By ▼ -0.10 (-1.26%)
FCCL 40.00 Decreased By ▼ -0.65 (-1.6%)
FFL 16.80 Decreased By ▼ -0.06 (-0.36%)
FLYNG 26.50 Decreased By ▼ -1.25 (-4.5%)
HUBC 132.79 Increased By ▲ 0.21 (0.16%)
HUMNL 13.99 Increased By ▲ 0.10 (0.72%)
KEL 4.67 Increased By ▲ 0.07 (1.52%)
KOSM 6.57 Decreased By ▼ -0.05 (-0.76%)
MLCF 46.66 Decreased By ▼ -0.94 (-1.97%)
OGDC 211.89 Decreased By ▼ -2.02 (-0.94%)
PACE 6.89 Decreased By ▼ -0.04 (-0.58%)
PAEL 41.34 Increased By ▲ 0.10 (0.24%)
PIAHCLA 17.02 Decreased By ▼ -0.13 (-0.76%)
PIBTL 8.13 Decreased By ▼ -0.28 (-3.33%)
POWER 9.37 Decreased By ▼ -0.27 (-2.8%)
PPL 181.45 Decreased By ▼ -0.90 (-0.49%)
PRL 41.60 Decreased By ▼ -0.36 (-0.86%)
PTC 24.69 Decreased By ▼ -0.21 (-0.84%)
SEARL 112.25 Increased By ▲ 5.41 (5.06%)
SILK 1.00 Increased By ▲ 0.01 (1.01%)
SSGC 44.00 Increased By ▲ 3.90 (9.73%)
SYM 19.18 Increased By ▲ 1.71 (9.79%)
TELE 8.91 Increased By ▲ 0.07 (0.79%)
TPLP 12.90 Increased By ▲ 0.15 (1.18%)
TRG 67.40 Increased By ▲ 0.45 (0.67%)
WAVESAPP 11.45 Increased By ▲ 0.12 (1.06%)
WTL 1.78 Decreased By ▼ -0.01 (-0.56%)
YOUW 4.00 Decreased By ▼ -0.07 (-1.72%)
BR100 12,170 Increased By 125.6 (1.04%)
BR30 36,589 Increased By 8.6 (0.02%)
KSE100 114,880 Increased By 842.7 (0.74%)
KSE30 36,125 Increased By 330.6 (0.92%)

Researchers on Tuesday unveiled a genetic modification that enables plants to use a quarter less water with scant reduction in yield. By altering a single gene, scientists coaxed tobacco plants - a model crop often used in experiments - to grow to near normal size with only 75 percent of the water they usually require.
If major food crops respond the same way, they said, the first-of-its-kind genetic "hack" could help feed the growing population of an increasingly water-starved world. "This is a major breakthrough," said senior author Stephen Long, a professor at the Institute of plant biology at the University of Illinois. "When water is limited, these modified plants will grow faster and yield more."
The findings were reported in the journal Nature Communications. Today, 1.2 billion people live in regions where water is scarce, and four billion - two-thirds of humanity - experience scarcity at least one month every year.
By 2030, the planet will face a 40 percent water deficit if global warming continues at its current pace, according to the UN World Water Development report. Agriculture guzzles three-quarters of all groundwater withdrawals - 90 percent in poor countries. "Making crop plants more water-use efficient is arguably the greatest challenge for current and future plant scientists," said lead author Johannes Kromdijk, also from the University of Illinois.
Long and his team tweaked the gene that codes a protein - known as PsbS - crucial to photosynthesis, the process by which plants convert light into nutrients. PsbS plays a key role in relaying information about the quantity of daylight, which triggers the opening and closing of microscopic leaf pores called stomata.
When stomata are open, plants can absorb the CO2 needed for photosynthesis. At the same time, however, water also escapes into the air. In the genetically engineered plants, increased levels of PsbS caused the tiny leaf pores to close earlier than they normally would, allowing the plant to retain more precious liquid.
Ironically, this gain in water storage is only made possible by global warming, which has increased the concentration of carbon dioxide in the atmosphere by about 25 percent since 1950. In the experiments, the tobacco plants could take in enough CO2 - despite the stomata's shortened work day - because of this higher concentration.

Copyright Agence France-Presse, 2018

Comments

Comments are closed.