AGL 37.90 Decreased By ▼ -0.12 (-0.32%)
AIRLINK 213.50 Increased By ▲ 16.14 (8.18%)
BOP 9.86 Increased By ▲ 0.32 (3.35%)
CNERGY 6.40 Increased By ▲ 0.49 (8.29%)
DCL 9.22 Increased By ▲ 0.40 (4.54%)
DFML 37.51 Increased By ▲ 1.77 (4.95%)
DGKC 100.70 Increased By ▲ 3.84 (3.96%)
FCCL 35.95 Increased By ▲ 0.70 (1.99%)
FFBL 88.94 Increased By ▲ 6.64 (8.07%)
FFL 14.49 Increased By ▲ 1.32 (10.02%)
HUBC 133.76 Increased By ▲ 6.21 (4.87%)
HUMNL 13.70 Increased By ▲ 0.20 (1.48%)
KEL 5.63 Increased By ▲ 0.31 (5.83%)
KOSM 7.24 Increased By ▲ 0.24 (3.43%)
MLCF 46.00 Increased By ▲ 1.30 (2.91%)
NBP 61.03 Decreased By ▼ -0.39 (-0.63%)
OGDC 226.69 Increased By ▲ 12.02 (5.6%)
PAEL 41.35 Increased By ▲ 2.56 (6.6%)
PIBTL 8.60 Increased By ▲ 0.35 (4.24%)
PPL 202.00 Increased By ▲ 8.92 (4.62%)
PRL 39.95 Increased By ▲ 1.29 (3.34%)
PTC 27.72 Increased By ▲ 1.92 (7.44%)
SEARL 108.01 Increased By ▲ 4.41 (4.26%)
TELE 8.62 Increased By ▲ 0.32 (3.86%)
TOMCL 36.20 Increased By ▲ 1.20 (3.43%)
TPLP 14.24 Increased By ▲ 0.94 (7.07%)
TREET 24.38 Increased By ▲ 2.22 (10.02%)
TRG 61.15 Increased By ▲ 5.56 (10%)
UNITY 34.40 Increased By ▲ 1.43 (4.34%)
WTL 1.68 Increased By ▲ 0.08 (5%)
BR100 12,200 Increased By 473.7 (4.04%)
BR30 38,071 Increased By 1694.4 (4.66%)
KSE100 113,546 Increased By 4032.9 (3.68%)
KSE30 35,906 Increased By 1392.6 (4.04%)
Technology

New tiny robots can keep us healthy from within, prevent diseases

In order to keep people healthy from within and prevent them from diseases, researchers have created tiny robots wh
Published February 12, 2019

In order to keep people healthy from within and prevent them from diseases, researchers have created tiny robots which can stimulate cells and tissues to help protect organs from injury.

Research team at EPFL has developed artificial muscle-powered tiny micromachines that are able to mechanically stimulate cells and microtissue and can carry out complex manipulation tasks under physiological conditions on a microscopic scale.

Improper muscle movements can cause development on various illnesses. This lead the team to build the microscopic tools and soft robotic devices that can be implanted in the body to help regulate different organ movements.

Smart cancer pills track patients with tiny sensors in their medicines

Inspired by body’s locomotor system, the team assembled the tiny robots from microscopic hydrogel components, similar to Lego bricks. The blocks formed a kind of ‘skeleton’ while adding the tendon-like polymers allowed the structure to flex and bend, explained Futurism.

The tiny robots were wirelessly activated by laser beams that triggered a rapid contraction and relaxation cycle that lasts for a few milliseconds. The result is a system of cell-sized artificial bones and muscles that can carry out complex microscopic manipulation tasks within the body.

They can also incorporate microfluidic chips, meaning that they can be used to perform combinatorial tests involving high-throughput chemical and mechanical stimulation in different biological samples, reported Science Daily.

“Our soft actuators contract rapidly and efficiently when activated by near-infrared light. When the entire nanoscale actuator network contracts, it tugs on the surrounding device components and powers the machinery,” said Berna Ozkale, the led author of the study published in Lab on a Chip.

With this technique, scientists were able to remotely activate several microactuators at specified locations producing great results. The microactuators complete each contraction-relaxation cycle in milliseconds with large strain.

Moreover, this technology can prove to be beneficial for doctors who can use them as tiny medical implants to mechanically stimulate tissue or to actuate mechanisms for an on-demand delivery of medicines from within the body.

Copyright Business Recorder, 2019

Comments

Comments are closed.