AIRLINK 217.98 Decreased By ▼ -4.91 (-2.2%)
BOP 10.93 Increased By ▲ 0.11 (1.02%)
CNERGY 7.55 Decreased By ▼ -0.01 (-0.13%)
FCCL 34.83 Decreased By ▼ -2.24 (-6.04%)
FFL 19.32 Increased By ▲ 0.08 (0.42%)
FLYNG 25.15 Decreased By ▼ -1.89 (-6.99%)
HUBC 131.09 Decreased By ▼ -1.55 (-1.17%)
HUMNL 14.56 Decreased By ▼ -0.17 (-1.15%)
KEL 5.18 Decreased By ▼ -0.22 (-4.07%)
KOSM 7.36 Decreased By ▼ -0.12 (-1.6%)
MLCF 45.63 Decreased By ▼ -2.55 (-5.29%)
OGDC 222.08 Decreased By ▼ -1.18 (-0.53%)
PACE 8.16 Decreased By ▼ -0.02 (-0.24%)
PAEL 44.19 Increased By ▲ 0.69 (1.59%)
PIAHCLA 17.69 Decreased By ▼ -0.37 (-2.05%)
PIBTL 8.97 Decreased By ▼ -0.10 (-1.1%)
POWERPS 12.51 Decreased By ▼ -0.50 (-3.84%)
PPL 193.01 Decreased By ▼ -5.23 (-2.64%)
PRL 43.17 Increased By ▲ 0.93 (2.2%)
PTC 26.63 Decreased By ▼ -0.76 (-2.77%)
SEARL 107.08 Decreased By ▼ -3.00 (-2.73%)
SILK 1.04 Decreased By ▼ -0.02 (-1.89%)
SSGC 45.00 Decreased By ▼ -2.30 (-4.86%)
SYM 21.19 Increased By ▲ 0.42 (2.02%)
TELE 10.15 Decreased By ▼ -0.37 (-3.52%)
TPLP 14.51 Decreased By ▼ -0.44 (-2.94%)
TRG 67.28 Decreased By ▼ -1.57 (-2.28%)
WAVESAPP 11.29 Decreased By ▼ -0.63 (-5.29%)
WTL 1.70 Decreased By ▼ -0.09 (-5.03%)
YOUW 4.25 Decreased By ▼ -0.10 (-2.3%)
BR100 12,397 Increased By 33.3 (0.27%)
BR30 37,347 Decreased By -871.2 (-2.28%)
KSE100 117,587 Increased By 467.3 (0.4%)
KSE30 37,065 Increased By 128 (0.35%)
Technology

NASA, MIT create new shape-shifting airplane wing for more efficient air travel

Researchers from NASA and MIT have successfully built a new kind of airplane wing that could automatically change s
Published April 2, 2019 Updated April 4, 2019

Researchers from NASA and MIT have successfully built a new kind of airplane wing that could automatically change shape and make air travel way more efficient.

The new structure is a lightweight lattice framework which is made up of thousands of repeating, tiny triangles of matchstick-like struts that are covered in a thin polymer layer, detailed Engadget. Since this material mainly consists of empty space, it is incredibly lightweight, less than one-thousandth the density of rubber.

Moreover, the struts enable the wing to change its shape automatically in response to changes in the aerodynamic loading conditions. The wing automatically adjusts itself to whatever configuration is most favorable for the current phase of flight. Both the factors combined could pave way to make aircraft more energy efficient.

MIT researchers fly first-ever aircraft with no moving parts

Researchers explained that for each of the phases of flight, such as takeoff and landing, cruising, maneuvering and such, they all have their own various set of optimal wing parameters, hence providing a much better approximation of the best configuration for each stage, as per MIT News.

“We’re able to gain efficiency by matching the shape to the loads at different angles of attack,” said lead author Nicholas Cramer. “We’re able to produce the exact same behavior you would do actively, but we did it passively.”

“The research shows promise for reducing cost and increasing the performance for large, light weight, stiff structures,” researcher Daniel Campbell, who wasn’t involved in the research, told MIT News. “Most promising near-term applications are structural applications for airships and space-based structures, such as antennas.”

Copyright Business Recorder, 2019

Comments

Comments are closed.